Logistic regression model for analyzing extended haplotype data.
نویسندگان
چکیده
Recently, there has been increased interest in evaluating extended haplotypes in p53 as risk factors for cancer. An allele-specific polymerase chain reaction (PCR) method, confirmed by restriction analysis, has been used to determine absolute extended haplotypes in diploid genomes. We describe statistical analyses for comparing cases and controls, or comparing different ethnic groups with respect to haplotypes composed of several biallelic loci, especially in the presence of other covariates. Tests based on cross-tabulating all possible genotypes by disease state can have limited power due to the large number of possible genotypes. Tests based simply on cross-tabulating all possible haplotypes by disease state cannot be extended to account for other variables measured on the individual. We propose imposing an assumption of additivity upon the haplotype-based analysis. This yields a logistic regression in which the outcome is case or control, and the predictor variables include the number of copies (0, 1, or 2) of each haplotype, as well as other explanatory variables. In a case-control study, the model can be constructed so that each coefficient gives the log odds ratio for disease for an individual with a single copy of the suspect haplotype and another copy of the most common haplotype, relative to an individual with two copies of the most common haplotype. We illustrate the method with published data on p53 and breast cancer. The method can also be applied to any polymorphic system, whether multiple alleles at a single locus or multiple haplotypes over several loci.
منابع مشابه
Bayesian Logistic Regression Model Choice via Laplace-Metropolis Algorithm
Following a Bayesian statistical inference paradigm, we provide an alternative methodology for analyzing a multivariate logistic regression. We use a multivariate normal prior in the Bayesian analysis. We present a unique Bayes estimator associated with a prior which is admissible. The Bayes estimators of the coefficients of the model are obtained via MCMC methods. The proposed procedure...
متن کاملComparison of the power of haplotype-based versus single- and multilocus association methods for gene × environment (gene × sex) interactions and application to gene × smoking and gene × sex interactions in rheumatoid arthritis
Accounting for interactions with environmental factors in association studies may improve the power to detect genetic effects and may help identifying important environmental effect modifiers. The power of unphased genotype-versus haplotype-based methods in regions with high linkage disequilibrium (LD), as measured by D', for analyzing gene x environment (gene x sex) interactions was compared u...
متن کاملبه کارگیری مدلهای رگرسیون لجستیک ترتیبی در مطالعات کیفیت زندگی
Background & Objectives: Due to the increasing tendency to measure the quality of life in recent years and the extensive quality of life questionnaires, it is important to determine the appropriate method of analyzing data derived from these studies. The aim of the present study was to introduce ordinal logistic regression models as an appropriate method for analyzing the data of quality of li...
متن کاملA NEW APPROACH FOR PARAMETER ESTIMATION IN FUZZY LOGISTIC REGRESSION
Logistic regression analysis is used to model categorical dependent variable. It is usually used in social sciences and clinical research. Human thoughts and disease diagnosis in clinical research contain vagueness. This situation leads researchers to combine fuzzy set and statistical theories. Fuzzy logistic regression analysis is one of the outcomes of this combination and it is used in situa...
متن کاملComparison of ordinary logistic regression and robust logistic regression models in modeling of pre-diabetes risk factors
Background: Regarding the increased risk of developing type 2 diabetes in pre-diabetic people, identifying pre-diabetes and determining of its risk factors seems so necessary. In this study, it is aimed to compare ordinary logistic regression and robust logistic regression models in modeling pre-diabetes risk factors. Methods: This is a cross-sectional study and conducted on 6460 people, over ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Genetic epidemiology
دوره 15 2 شماره
صفحات -
تاریخ انتشار 1998